RF \& Microwave References ${ }_{\text {tots }}$

S-Parameters/Return Loss/Smith Chart

S-parameters (scattering parameters) are a convention for characterizing RF \& microwave devices, consisting of reflection and transmission coefficients-familiar concepts to designers. Transmission coefficients are commonly referred to as gains or attenuations, reflection coefficients relate to return losses and VSWRs (voltage standing wave ratios).

Conceptually, "s" parameters are like "h", "y", or "z" parameters because they describe the inputs and outputs of a black box. The inputs and outputs are in terms of power for "s" parameters; for "h", " y ", and " z " parameters, they are voltages and currents. Using the convention that " a " is a signal into a part and " b " is a signal out, the
 figure below helps to explain " s " parameters.

In this figure, "a" and "b" are the square roots of power; $\left(a_{1}\right)^{2}$ is the power incident are port 1 and $\left(\mathrm{b}_{2}\right)^{2}$ is the power leaving port 2 . The diagram shows the relationship between the "s" parameters and the "a's" and "b's". For example, a signal, a_{1}, is partially reflected at port 1 ; the rest of the signal is transmitted through the device and out of port 2 . The fraction of a_{1} that is reflected at port 1 is s_{11}; the fraction of a1 that is transmitted is s_{21}. Similarly, the fraction of a_{2} that is reflected at port 2 is s_{22}, and the fraction s_{12} is transmitted. The signal, b_{1}, leaving port 1 is the sum of the fraction of a_{1} that is reflected at port 1 and the fraction of a_{2} that is transmitted from port 2. Thus, the outputs can be related the the inputs by the equations:
$\mathrm{b}_{1}=\mathrm{s}_{11} \mathrm{a}_{1}+\mathrm{s}_{12} \mathrm{a}_{2}$
$\mathrm{b}_{2}=\mathrm{S}_{21} \mathrm{a}_{1}+\mathrm{S}_{22} \mathrm{a}_{2}$
when $\mathrm{a}_{2}=0$
$\mathrm{S}_{11}=\frac{\mathrm{b}_{1}}{\mathrm{a}_{1}} \quad \mathrm{~S}_{21}=\frac{\mathrm{b}_{2}}{\mathrm{a}_{1}}$
and when $\mathrm{a}_{1}=0$

$$
\mathrm{s}_{12}=\frac{\mathrm{b}_{1}}{\mathrm{a}_{2}} \quad \mathrm{~s}_{22}=\frac{\mathrm{b}_{2}}{\mathrm{a}_{2}}
$$

Continued page 2

RF \& Microwave References ${ }_{2014}$

S-Parameters/Return Loss/Smith Chart, continued

Noise Power at Standard Temperature

In deep space $\mathbf{k T}=-198 \mathrm{dBm} / \mathrm{Hz}$

* Noise figure is defined when input is terminated at 290 Kelvins.

RF \& Microwave References ${ }_{\text {sol4 }}$

Maximum and Minimum Resultant VSWR from Two Mismatches

Spectrum Analyzer Display Range

Typical Values

The atmospheric attenuation of mm-wave signals varies greatly, allowing for long-range exploitation by operating in the windows at $35,94,140$, and 220 GHz , or for short-range, intercept resistant communications at 44 to 65 GHz .

Modulation Quality: Error Vector Magnitude

RF \& Microwave References ${ }_{\text {ata }}$

Microwave Formulae

Wavelength (λ)

$\lambda($ centimeters $) \stackrel{3}{=} \times 10^{10}$
$\lambda($ meters $)=\frac{3 \times 10^{10}}{\mathrm{f}}$
where $\mathrm{f}=$ frequency (hertz)
dB (Power and Voltage)
$\mathrm{dB}_{\text {(power) }}=10 \log _{10} \frac{\mathrm{P} 1}{\mathrm{P} 2}$
$\mathrm{dB}_{\text {(power) }}=20 \log _{10} \frac{\mathrm{E} 1}{\mathrm{E} 2}$
where P1 \& P2 = system powers
$\mathrm{E} 1 \& \mathrm{E} 2=$ system voltages

Characteristic Impedance $\left(Z_{0}\right)$ of RF Cable
$\mathrm{Z}_{0}=\frac{138}{\sqrt{\varepsilon_{\mathrm{r}}}} \log _{10} \frac{\mathrm{D}}{\mathrm{d}}$
where $\varepsilon_{\mathrm{r}}=$ relative dielectric constant
$\mathrm{D}=$ inside diameter of outer conductor
$d=$ outside diameter of inner conductor

Velocity Factor
$\mathrm{v}=\frac{1}{\sqrt{\varepsilon_{\mathrm{r}}}} \times 100$
where $\varepsilon_{\mathrm{r}}=$ relative dielectric constant

Noise Figure $\left(\mathrm{NF}_{\mathrm{dB}}\right)$
$\mathrm{NF}_{\mathrm{dB}}=10 \log _{10} \frac{\mathrm{~S}_{\mathrm{i}} / \mathrm{N}_{\mathrm{i}}}{\mathrm{S}_{\mathrm{o}} / \mathrm{N}_{\mathrm{o}}}$
Where $\mathrm{NF}_{\mathrm{dB}}=$ noise figure (dB)
$\mathrm{S}_{\mathrm{i}} / \mathrm{N}_{\mathrm{i}}=$ input signal-to-noise ratio
$\mathrm{S}_{\mathrm{o}} / \mathrm{N}_{\mathrm{o}}=$ output signal-to-noise ratio
Reflection Coefficient ρ
$\rho=\frac{\text { VSWR }-1}{\text { VSWR }+1}$
where VSWR = Voltage Standing Wave Ratio

Return Loss in dB

$d B=20 \log _{10}|\rho|$
where $\rho=$ reflection coefficient
vSWR
VSWR $=\frac{1+\rho}{1-\rho}$
where $\rho=$ reflection coefficient

Digital Modulation Type and Constellation

BPSK
One Bit Per Symbol Symbol Rate $=$ Bit Rate

16 OAM
Four Bits Per Symbol Symbol Rate $=1 / 4$ Bit Rate

OPSK
Two Bits Per Symbol Symbol Rate $=1 / 2$ Bit Rate

32 OAM
Five Bits Per Symbol
Symbol Rate $=1 / 5$ Bit Rate

Pi/4DOPSK: Two Bits Per Symbol Symbol Rate =1/2 Bit Rate or 8PSK: Three Bits Per Symbol Symbol Rate $=1 / 3$ Bit Rate

64 OAM
Six Bits Per Symbol Symbol Rate $=1 / 6$ Bit Rate

